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ABSTRACT

In this paper we carry out an asymptotic analysis of the system of

differential equations describing the transient behavior of a p-n-junction

device (i.e. a diode). we determine the different time-scales present in the

equations and investigate which of them actually occur in physical

situations. We derive asymptotic expansions of the solution and perform some

numerical experiments.
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7.1%

SIGNIFICANCE AND EXPLANATION

The present paper is concerned with a mixed elliptic-parabolic singularly

perturbed initial boundary value problem describing a p-n-junction device.

The purpose of transient modelling is the determination of the response time

of a particular device (as opposed to the stationary model where the emphasis

lies on the computation of voltage current characteristics). We carry out an

asymptotic analysis using a singular perturbation parameter which is

proportional to the minimal Debeye length.

Essentially we deal with the involved equations on 2 different time

scales: One is proportional to the size of the device. The other one is the

so called "dielectric relaxation time" which is several orders of magnitude

smaller and essentially a property of the material and the doping

concentration. Thus only effects occurring on the "slow" timescale (which is

on the order of 10-9 sec) can be accelerated by miniaturization of the device

whereas the dielectric relaxation time represents a lower bound to this

(technological) approach. This fact has been known by engineers for several

years. However, this analysis gives a mathematical proof for it. Moreover,

it is precisely determined which effects are due to which time scales. We

derive asymptotic expansions for the solution in powers of the perturbation

parameter and give an existence proof for the solution of the reduced

problem. We determine (and prove) the decay rate of the fast time scale

solution.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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AN ASYMPTOTIC ANALYSIS OF A TRANSIENT p-n JUNCTION MODEL

Christian Ringhofer

0. Introduction

In this paper we present an asymptotic analysis of a singularly perturbed mixed

system of parabolic and elliptic equations modelling a p-n-junction device. We consider

the following physical situation: A semiconductor (for instance silicone) is doped with

donor atoms (positive ions) in the left-hand-side and with acceptor atoms (negative ions)

in the right-hand-side of the device. The device possesses 2 ohmic contacts to which a

" . bias is applied. The devive is assumed to have a characteristic length 21(- 0.5*10- 3cm).

The physics of a p-n junction are explained in Sze [1969], Ashcroft et al. (1976] and R.

A. Smith (1978]. The equations governing the potential distribution and the carrier and

current densities are in the case of one space dimension (see Van Roosbroeck 11950]):

(0.0) , = (n - p - C) Poisson's equation

n 1 - R continuity equations

(0.2) Pt = J - R for electrons and holes
Px

(0.3) Jn - q(Dnnx - P n n) current relations

(0.4) Jp = -q(Dppx + U ppx) for electrons and holes

The system (0.0)-(0.4) is subject to the boundary conditions

(0.5) (a) f(-t,t) -* I 2(t), (b) f(l,t) = 1(t)

(0.6) n(-L,t) = p-1 + C(-X), p(-.,t) = p_1

(0.7) n(t,t) = p1 + C(l), p(t,t) P1

and the initial conditions

(0.8) *(x,O) * 'I(x)

n(x,O) n (X)

p(x,O) Pi(x)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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The meaning of the dependent variables with units is given in Table 1:

Table I

** electric potential (V)

*X electric field (V cm-1 )

-n electron density (cm-3

p hole density (cm 3)

elcrncret est Ap2

-2

3p hole current density (A cm2

The parameters q, E, U, n Uli, DnI Dp, nit UT in (0.0)-(0.4) have the following meaning

and approximate value at T - 300K (room temperature).

Table 2

*q elementary charge 101 As

C permittivity constant io-1 2 AsV' cm-
3

Iin electron mobility 10O3 cm 
2 V Ia-

Ii p'i hole mobility 10 cm 2 _
1 s-1

n' n intrinsic density 10 10 cm-3

%D n electron diffusion constant 25 c,2S

D hole diffusion constant 25cm2aI
P

CCx) in (0.0) is a given function of space and models the doping profile (i.e. the

* preconcentration of electrons and holes). we assume that CCX < 0 for x < 0 (in the

p-reqion) an4 CWx) 0 f or x > 0 (in the n-region holds). Thus we locate the p-n

Junction at x = .Moreover we assume that C(x) has a jump-discontinuity at x =0

(abrupt Junction) and that CCx) is an odd function of x i.e.

(0.9) C(-x) -CCx) for x $0, C(O) $0

-2-
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holds. (Although the oddness of C does not appear as a special case from a physical

point of view it will sirllify the analysis considerably). Because of the physical

background of the boundary conditions (0.5)-(0.7) the oddness of C(x) resultq in

P-1 = P1 
+ C.)o For the recombination rate R in (0.1), (0.2) we take the so called

Shockley Read Hall recombination term:

2
n.p - ni

1 rn (n + ni) + Tp(p + nt )

T and T denote the average lifetime of electrons and holes. Realistic numericaln p

%J values for T and T are T n- t" , 10-6(s). Other recombination rates can be foundn p n p

in Langer et al. (19812 and SchUtz et al. [1981). Generally it can be said that the

choice of the recombination rate is not very important for the behavior of the solution of

the time dependent problem (0.0)-(0.8) as long as we do not consider impact ionization

effects (whereas it is of considerable importance in the steady state case (see Mock

[1983])).

For the rest of this paper we assume that the initial functions *Vi n, and p, in

(0.8) are compatible with the boundary conditions (0.5)-(0.7) and the (elliptic) equation

(0.0). Thus we request that

-" ,,( 0 .1 1 ) r = .- ( n , - P , - C )

xx

(0.12) p(t-) Pt

(0.13) n(±l;) = P +(tx)

(0.14) $i - -*1 (0). * I (I) " 1-

holds. After an appropriate scaling we carry out a singular perturbation analysis of

problem (0.0)-(0.8) where the quantity

1/2Cu 
T(0.15) A 

M  

2 "

I.2q maxlC(x)I
x

(which is proportional to the minimal Debeye length) acts as a perturbation parameter. In

P. % -3-
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this analysis we will rely on a similar asymptotic analysis for the steady state problem

by Markowich and Ringhofer 1981] and Markowich et al. (1982].

- It turns out that in addition to the internal layer behavior already present in the

* steady state case (see Markowich and Ringhofer [1981] there exist two different time

scales in the problem (O.0)-(0.8). One time scale (the "slow" scale) is proportional to

29
2/U and is of the order of magnitude 10- sec for modern devices. Here U - P - U

n p

". denotes the mobility. The other ("fast") time scale is proportional to the so called

dielectric relaxation time (see Sze [1969]) which is several orders of magnitude

smaller. Thus the asymptotic solution of (0.0)-(0.8) will consist of 4 different parts.

Two parts vary on the slow time scale - one of them valid near the p-n junction (x - 0)

one of them valid away from x - 0. The two other parts - again an outer solution and a

p-n-junction layer solution - vary on the fast time scale and are only valid near t - 0.

From the work of Markowich and Ringhofer [1982] we conclude that the fast time scale is-.a

not present if *'V n, and p, are solutions of the steady state problem

(0.16) 4x = (n- p -C)
a-xx C

(0.17) (a) n qR, (b) Jn = q(Dnnx - u n*x

(0.18) (a) JPx -qR, (b) Jp -q(Dppx + pptx

Together with the boundary conditions corresponding to (0.5)-(0.7) in the steady state

case.

This paper is organized as it follows: In Section 1 we scale (0.0)-(0.8) and

reformulate the problem as a singular perturbation problem. In Section 2 we derive the

asymptotic expansion for the slow time scale. We prove the existence of a solution of the

reduced problem and give necessary and sufficient conditions for the slow time scale

expansion to satisfy the differential equations the boundary and the initial conditions.

These conditions are satisfied if the initial data *,, nI and p, are solutions of the

steady state problem (0.16)-(0.18). In Section 3 we consider the case when these

conditions are violated and derive an asymptotic expansion for the solution of (0.0)-(0.8)

with general initial data (0.8) which just satisfy the compatibility conditions (0.11)-

-4-
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(0.14). In Section 4 we present some asymptotic solutions which were obtained by solving

the reduced problem and the layer equations numerically by finite difference methods. The

* proofs of some results stated in Sections 2 and 3 are given in the appendix.
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1. Reformulation as Singular Perturbation Problem

First we scale (0.0)-(0.8) appropriately and reformulate it as a singular

perturbation problem: we scale the space variable x by the characteristic length I

and the time by t2/D where D - Dn = p denotes the diffusion coefficient

(1.0) x s =t 2

For %,I n, p, J n J we use the following scaling:
p

U (1.1) 
= . n En p

J •= J Jn s  J = £Jn

(1.3) C : maxlc(x)l
X

(Here the variables with the subscript s denote the scaled variables.)

(1.4) Remark: For the rest of this paper we assume the Einstein relations

D Dn P
(1.5) UT  i-n -

n p

UT  (the thermal voltage) is only a function of the temperature (which is assumed to be

constant).

After scaling the system (0.0)-(0.8) assumes the form

2 a2  Clx)
(1.6) , 2 = n. - P5 - Cal Cs(xs) maxlc(x)l

(1.7) (a) - -R, (b) J n n ns(a) at s ax n s n ax a sx a

a a (b a
(a) - S = - R (bJJ s RSa, ats ax p5  s P ax ~ a

np -2 n
e (1.9) R = S Sp i 26

- s ns a Ps + C

%;% .- 6-
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boundary conditions:

1 (1.10) iis (-)t

n, -,t 5 ) P-i + C-1), n (,t 5 ) = + C(1)

(1.12) p(-1,ts) = p. 1  , p5 (1,t) = p1

initial conditions

* (1.13) *9s(x6,0) = I (xs ), n,(xs,0) = n (Xs), p,(x,,0) - P, (xs)

Here *,i, %# ptI,, n1 , pI s denote *tip *'i Pt 1 ' nI, p, scaled in the same way as

0, n and p. The (dimensionless) singular perturbation parameter X in (1.6) is of the

form

1/2

(1.14) .("T C -maxc(x)I
qL 2ax

A is proportional to the minimal Debeye length (see Sze (1969]). From hereon we will

omit the subscript s. Since C(x) is an odd function we can employ the "Ansatz"

(1.15) *(-x) - -f(x), n(x) - p(-x), Jn(X) - Jp(-x)

to obtain a problem posed on [0,11. This enables us to treat the internal layer at the

p-n junction (see Markowich and Ringhofer (1981]) as a boundary layer. In order to

employ this "Ansatz" we have to assume the corresponding relations for the intial data

*.I n, and pl.

(1.16) Assumption: The initial data satisfy

(1.17) 'I'1(-x) = -I(X), ni(x) = p1 (-x)

After employing (1.15) we obtain (1.6)-(1.13) in its final form:

(1.18) = n - p - C

(1.19) (a) nt =.Jnx - R, (b) Jn =nx - nx

(1.20) (a) Pt = -JPx R, (b) Jp "Px P'x

. .. . . . .... *.. ......... .



2(1.21) n " n p + 2d

boundary conditions:

(1.22) (1,t) =l(t), n(1,t) = p1 + C(I), p(1,t) - P1

(1.23) f(O,t) = 0, n(O,t) - p(O,t), Jn(O,t) - Jp(O,t)

initial conditions:

(1.24) *(x,O) = W'lx), nlx,O) = nl(x), plx,O) = pi(x)

(1.25) Notation: For the rest of this paper we denote the solution vector

(*,n,p,J n,Jp)T by

(1.26) w - (*,n,p,J ,J) T
np

The boundary conditions (1.23) emerge from the "Ansatz" (1.15). The compatibility

conditions now read

(1.27) )2I nI PI -C
xx

(1.28) 1 (ll) - l ni b, Pill) - a

(1.29) 4I(0) = 0, nllO) = pi(0), n, (0) - -Pi (0)
r x x

Again C1.29) is obtained from (1.17) and guarantees (1.23) to hold at t 0 .. In practice

, nI and PI will be the (scaled) solution of the steady state problem (0.16)-(0.18).

From Markowich and Ringhofer (1981] we know that this solution has an asymptotic expansion

in powers of X consisting of an outer solution and layer terms varying in the variable

= x/X. From here on we will assume that 4I, n, and p, have an asymptotic expansion

of the same form:

* (1.30) w1 x W w Cx,X) w wx

J.0

- C4-,n.p 1

* -. where the w1  satisfy

I~j -C 2
(1.31) w Cle for some constants CIC 2

. '. .,................,......•......................,....... .... ...,......,.....................,........"...... ........ ........-. ,

" %.. . . . .



477

4.

Moreover, we will assume that the initial data are such that the current densities Jn

and Jp stay uniformly bounded at t - 0 as X tends to zero:

(1.32) max Ii (x,X)I, max IJ (xX)l 4 const. as + 0
N.- * O,1] nI xecO, i P]

(1.33 ) n j : n - n I I , J 'P l -P1 x - p I *

4u.

4--

4,.

;%%

,p . . . . . . . . . . . -*...-*9*-.. 4 ,-.............-

.- , -;-_,--,-.,'-.'..-..... .. ...' ... .-.,: ...,...-"-'..-.-..'..'v.v. . - :.....-.. ..- '... '-.':.-,. ,. -... ..,5 ..,. ..'1% b, '-- ~~~ I % .. i ~ - -I"-'i: ' " III ' l~ '



2. Slow Time Scale Expansions

In this section we derive our asymptotic expansion to the solution w of (1.18)-

(1.24) of the form

(2.1) w(x,t,A) ~ (w (x,t) w+j(A,)]X
j

j=O

Thus we obtain an approximation of the solution on the "slow" t-time scale. The expansion

(2.1) will satisfy the differential equations (1.18)-(1.20) and the boundary conditions

(1.22)-(1.23). However, it will not satisfy the initial conditions (1.24) for arbitrary

initial data I' nI and p,. We derive a necessary and sufficient condition on

uy(,nIPi) such that the expansion (2.1) satisfies (1.24) as well. As it turns out

,A. these conditions are satisfied if iI' nI and p, in (1.24) are the solution of the

steady state problem

2
(2.2) X Jn p-C

xx

(2.3) -R "Jnx' n nx n*
xx

(2.4) R -JPx, p - -Px - x

together with the boundary conditions (1.22)-(1.23). Since this will be the case in all

"physically meaningful" situations (2.1) actually represents an approximation to the

solution of (1.18)-(1.24). Furthermore we give an existence result for the zerolth order

term w in (2.1).
J ~0

We start with the equations determining w: Setting A equal to zero in (1.18)-

(1.24) gives

-0 -0
(2.5) 0 n - p - C

(2.6) (a) n= J + R, (b) J =n ;0n0

t n n x x
x

-0 -0 -0 -0 -0 0-0
(2.7) (a) Pt -J + R, (b) 0 =-x P

-0 -0 2
- (2.8) R : n 0 -

n + p + 25

-10-
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Thus Poisson's equation (1.18) degenerates to the condition of vanishing space charge for
i+

Subtracting (2.7) from (2.6) and using (2.5) we can rewrite (2.6)-(2.7) into

(2.9) [(2p + C);' x  C ,x

(2.10) (a) Pt =- +R°, (b) 30 -x -p * x

Px p x

-'0 -'0
(2.11) = +

.0
2p + C

(2.9) is an elliptic equation expressing the conservation of the total current Jn + Jp

(in the absence of space charge) coupled to the parabolic conservation law (2.10)(a),(b).

-0 -0
n and J are then given a posteriori by virtue of (2.5):

-'0 -0
(2.12) n - p + C

-0 -'0 0 0
(2.13) Jn " x + Cx ( + C)x

Since (2.9)-(2.10) is a system involving two second order differential operators in space

we can not expect its solution to satisfy all six boundary conditions (1.22)-(1.23). At

the contact (x - 1), however, the boundary conditions have been derived from the

assumption of vanishing space charge (n - p - C = 0). Therefore the boundary conditions

(1.22)-(1.23) are consistent with (2.5)- If we impose the boundary conditions

(2.14) 4O(1,t) " 'l(t), pO(1,t) = P,

-0 -0
n := p + C satisfies automatically the third boundary condition

(2.15) n (1,t) a P1 + C(1)

Therefore no boundary layer term is needed at x - I (the contact). At x = 0 (the

-0 -0
junction) the condition n(0,t) = p(0,t) contradicts n - p - C - 0. Therefore the

-0
outer solution w has to be supplemented by a boundary layer term there. (In other

words the approximation of vanishing space charge can not be valid near the p-n

-'0
junction.) Thus we supplement w (x,t) by the layer term

• t x - 0 0 . 0 0 0
(2.16) w (,t), ( ,n ,p ,J ,J3)

A~ np

where we request that Iw 1 decays exponentially as + * *. Inserting

- 11-

o,. ...-..... ..... I. . ,.,



w (),t)+ w(E,t) into (1.18)-(1.20) and X~ + 0 gives (using (2.9)-(2.13))-.

(2.17) n p

(2.18) (a) 0 7 (b) 0 = np (p(O~t) +.

N ^0 0

(2.20) ) 0(b 0, - 0; ;(Ot

' -0 0-(2.21) n 0~t 0tEx( ~t)-1

(2.24) no (Ot)(e; (t))

(222n (&t)xp( (0,t) = p (0;,t)() (,)

-00-

(2.26) 30 (0,t) = 30 (Olt)
n p

Fro' (2.24)-(2.26) we obtain two boundary conditions for the system (2.9)-(2.10) at

x = .Thus we have the following

(2.27) Theorem: The zero'th order term w0 of the outer solution satisfies the reduced

problem:

(2.28) [(2pO + C);] =C

;S 0 -0 +-0, 0 -0 ';0-0
(2.29) (a) Pt=3 +, (b) 30 x

(2.30p [ (0,t) + C(0)Iexp(-; (0,t)] = p(0,t)exp(; (0,t)]

-0 -0
(2.31) .7 (0,t) -3(Olt)

n p

(232 ;(1,t) =*(t), p0(1,t) -p 1

(2.33) ;0 = + C, 30 - ;0 + Cx GO( + C);

(2.34) p (x,0) =f(.)

F -12-
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(2.35) Remark: We have not determined the initial function f(x) yet. The appropriate

choice of f(x) will be discussed at the end of this section and in Section 3. In any

case we can prove an existence result for small f up to a certain value of the bias

* (2.36) Theorem: There exist positive constants *0 and K such that if

(2.37) a - maxlf(x)I < a0 and * > Zn K

holds then (2.28)-(2.34) has a classical solution which is continuously differentiable-I

with respect to x and t for x e [0,1] and all t less than some arbitrary but

finite time T. The proof of Theorem (2.36) is deferred to the Appendix.

-0 "
Once w is obtained as the solution of problem (2.28)-(2.34) w can be obtained

by solving (2.17)-(2.19) together with the appropriate boundary conditions:

(2.38) Theoremt The layer term w - ,n p ,,J) in (2.1) satisfies
n p

(.9 0-
- n (0,t)[e *  - 11 - p(O,t)[e - 1]

*(2.40) 0 '-

(2.40) (Ot) - -;O(o,t), ;0(-,t) - 0

(2.41) n (Et) - n°(O,t)[a - 11, p (&It) - ;0(0,t)[e t)

(2.42) 3 (&,t) -(,t) . 0
n p

We now turn to the question of an appropriate choice for the initial function f(x)

in (2.34). As mentioned earlier we can not satisfy the initial conditions (1.24) with our

expansion for arbitrary initial functions * Inipi which just satisfy the compatibility

condition (1.27)-(1.29). From the previous asymptotic analysis we conclude

(2.43) Lemma: If the solution w(x,t,X) of (1.18)-(1.24) possesses an asymptotic

expansion of the form (2.17) then the zero'th order term w1i(x) in (1.30) has to satisfy

(2.44) (2Pi + C)i% I -
x x

If (2.44), is satisfied then the zero order term wO(x,t) + w (&,t) in (2.27), (2.38)

satisfies the differential equations the boundary and the initial conditions up to terms

~ 0
of order O(A) if the initial function f(x) in (2.34) is chosen as pi(x).

-13-
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*Proof: Since (2.28) is time independent it obviously has to hold for t 0 if

w(x,t,X) has an asymptotic expansion of the form (2.1). Therefore (2.44) is a necessary

condition. On the other hand w(x,t) + w (&,t) satisfy the differential equations and

the boundary conditions up to terms of order 00A). The compatibility condition (2.46)

N' implies

(2.47) 0- ; -

.0 0 .0
(2.48) n' I n

.0
(2.49) 40 (0) =-;0(0)

If we choose f(x) in (2.34) to be ;0(.) then (2.33) and (2.27) imply

n;'0)=n(x). In this case 4' (x,0) satisfies
I

(2.50) C(2p1 (x) + C(x))4i0(x,0)l] C CX(x)
Ix x

-0 -0;,0,
(2.1)GO(0) + C(0)Je (0 p1)0Me ;04'(1,0) - '(0)

From (1.32) we conclude

(2.52) J n1  (n (0) + n )* -0

since n I decays exponentially for -

(2.53) n I(E) n(0)[e -1

and similarly

(2.54) PI (E) ;I (0)1]

has to hold. inserting 4'+ n + n1  + p into (1.29) and As + gives together
I I I~ 1 p

with (2.47)[ -14-
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(2.55) G0) + C(o)Je I -p0 1'(0
Ip(O I 1

Thus 4' and 4(x,0) satisfy the same differential equation (2.50) and the same boundary

* conditions. since this problem has a unique solution (which follows from a simple maximum

principle) 0' Wx S' (x,0) has to hold. Inserting (2.53) and (2.54) into (2.48) gives
I

.0 0
the same boundary value problem for 4' as 4'(E,0) has to satisfy namely

*0
^0 *1 -*' I(2.56) 4' Z n(O)[e - 11 ;'() - 1]

(2.57) ;' (0) (0) -1 0

Since (2.56)-(2.57) again has a unique solution 0FO and therefore

0OE 0(,O an p (E,0) has to hold.
nI

(2.59) Remark: So if the initial functions , and p, satisfy (2.44) in addition

to (2.58) we have constructed a zero order asymptotic solution to problem (1.18)-(1.24).

Higher order expansions can now be obtained in a straightforward manner. If the

corresponding assumptions are made on the higher order terms of *'s I and p, these

higher order expansions satisfy (1. 18)-( 1.24) to any arbitrary order in X.

We now conclude this section with the following

(2.59) Theorem: If the initial functions *, n, and p, are the solution of the steady

state problem

(2.60) 2 4'1 n - P - C
xx

(2.61) (a) Jn Ix R, (b) in nI x I ~I

(2.62) (a) J PIx--R, (b) 3 l -p I - p 10

-. (2.63) 4'(0) - 0 , '(1) 1 4'(0)

n 1 (0) - P1(O n n1 (1) - n

% 
. ...
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(2.64) Jn (0) -p(O P1() -p 1

then the conditions (2.44) is satisfied.

For the proof of this statement the reader is referred to M4arkowich and Ringhof or

% (1982) where a singular perturbation analysis of the problem (1.18)-C 1.24) can be found.

-16
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3. Fast Time Scale Expansions

In this section we investigate the asymptotic behavior of the solution of (1.18)-

(1.24) if the conditions (2.44)-(2.45) on the initial functions are violated. It turns

out that in this case there is an additional "fast" time scale present in the solution.

Although this time scale will not be present in the physically meaningful situations, as

we saw in the preceding section (since in these cases the initial functions are solutions

of the steady state problem (2.17)-(2.19)), it is of some interest to investigate these

"fast" solutions.

Any perturbation of the solution will propagate on this time scale. Therefore the

understanding of this fast time scale behavior is important for the development of any

numerical method for the solution of (1.18)-(1.24) (see Ringhofer (1983]). Thus we derive

our asymptotic solution of (1.18)-(1.24) for arbitrary initial functions *TO nI and p,

which just satisfy (1.27)-(1.29) (and not necessarily (2.44)-(2.45)).

First we determine the Possible fast time scale. For this purpose it is convenient

to reformulate problem (1.18)- (1.24): Differentiating Poisson's equation with respect to

time yields
!2

(3.1) xx t I nt -Pt
"' 2xx

Inserting for nt and Pt from (1.19)-(1.20) and replacing n by p + C + X 2 gives" 2 xt 2 xx 2 xxx

(3.2) (a) X 2 xf (b) J(- Jn + Jp) - Cx + - (2p + C + X 2 x

(3.3) (a) pt . JPx R, (b) Jp -Px I~x

n and Jn are then given a posteriori by

(3.4) n - p + C + A2xx

(3.5) Jn " J 
" j p -n x - n*x

The boundary conditions (1.22)-(1.23) become

(3.6) 0(0,t) - 0, 2x(0,t) - C(O), J(O,t) - 2Jp(0,t)

(3.7) (1t l(t), X 2 M(1t) of0 p(1,t) -Pl

xx

-17-
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Obviously (3.2), (3.3), (3.6), (3.7) are equivalent to (1.18)-(1.24) (provided the

solutions are sufficiently smooth).

We now try to determine a possible fast time scale:

(3.8) a > 0

Away from the p-n junction at x - P where we expect the derivatives w.r.t.x to be

bounded (3.2)(a)(b) assumes the form

X(3.9) 2 t C - (2p + C)* - (2p + C) * + O(X
2 )

(.)xxtI xx 

If 2p + C is in some sense "almost constant" away from x - 0 (which is the case for a

constant doping profile and reverse bias) (3.9) behaves like an ordinary differential

2
equation for *xx and therefore exhibits the fast time scale t/A . This heuristic

argument can be made more rigorous: We supplement the asymptotic expansion (2.1) by an

additional term varying on the fast time scale T - t/ a where a > 0 has to be

determined yet:

"".I w(x,t,A) 1- ; 1 (x,t) + ;'(E,t) + V(x,T)l
J-0

(3.10)

- %-a

T tA,

z = ($ , DV Jv)

(wj and w3 are the terms of the expansion (2.1) derived in the previous chapter.) We

I -'". _C2assume that z decays exponentially as T + *

-CT--' iJ(x,.)1 C Ce 2
(3.11) C

Then we have the following:

(3.12) Lemra: The only value of a for which there exists a non-trivial solution -0of

the corresponding equations is a = 2.

The proof of the lemma is trivial but lengthy and is therefor deferred to the

appendix.

.
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(3.13) Remark: The time scale T - t/
2  

has the following physical meaning: In unscaled

! -1

form it is of the size CUT(DqC ) sec which is proportional to the dielectric

relaxation time (see Sze [1969]).

The equations for z are now obtained from (3.2). Inserting the expansion (3.10)

into (3.2)-(3.9), fixing x and T - t/
2  

and X + 9 qives:

-0 -0 - 0 --
(3.14) Ox, - [(2p +2; + C),O _;-*01

XTx x x
-0 0 -0 -0 +-0)-0 ;0-0

(3.15) (a) VT - 0, (b) v - " (p + v x - v x

-0 -0
- (3.16) u v

-0 -0 -0 -0 - 0 -0o
-0 -0 -0

Here ;0, n and p have to be taken at (x,0). From (3.15), we conclude u - v - 0.

So we obtain ;0 from the equation

~0 ( - O12p (x,O) + C(x)* ]
xx " x

-0 -0 -0 -0
rU ,v ,Ju,J are then given a posteriori by

-0 0
(3.19) u -v - 0

* (3.20) (a) 3'(xT) - -p (x,0) (xT), (b) 3, ',T) - -n (X,0)* (XT)
v xu x

Thus there is (in the zero order approximation) no fast time scale correction to the

-0 -0
carrier densities n and p (u - v - 0). This is reasonable since we expect the

carrier flux to be much slower than the dielectric relaxation time. Correspondingly the

fast time scale correction of the currents only involves the drift current. To determine

a solution i0 of (3.18) it is necessary to impose two boundary conditions at x - 0

and x - I and an initial condition at T - 0. Since we have already satisfied all
-0 "0

boundary conditions with the slow time scale solution w + W we obtain

(3.21) (0,1r- 0, * (1,r) - •

4 -0
We can prove the following result about the decay of #0

(3.22) Theorem: The solution of the problem

-0 -00 ) + -0

(3.23) -x -
[

2
1
p Clx));]

(3.24) °(o,.t) - ., * (1,.1 = 0, * (x,O) - g(x)

satisfies

-19-

".

-o .~~P-



(3.25) I°(x, )l C

for some positive constant C and any a satisfying
-e -0

(3.26) 2p0(x,O) + C(x) > a

The proof is deferred to the appendix.

We now investigate the choice of proper initial functions for the problems (2.28)-

(2.34), (3.23)-(3.24) in order to construct an approximation to the solution of (1.18)-

(1.24) for general initial data nI, nI and p, which just satisfy the conditions

-0 -0
(1.27)-(1.32). Since the zero-order-fast-time-scale corrections u ,v vanish (see

(3.19)) we have to choose p(x) as an initial function f for problem (2.28) in any

case. This leads to the following procedure to obtain a zero order approximation to the

solution of (1.18)-(1.24) for arbitrary initial data:

Step 1: Solve problem (2.28)-(2.34) with f(x)(- p (x,0)) - pi(x). Obtain ;O(x,t) and

n;(x,t). nO(x,O) = n(x) is then satisfied automatically because of (1.27).

*0 ^0
Step 2: Solve the slow time-scale-boundary-layer problem (2.39)-(2.40). Obtain 4'r, n

and p Because of conditions (1.27)133) (0) - n

p.(&,O) -, 1 (E) holds.

If '%, nI and p1  are the solution of the steady state problem we are done. If not we

have to perform

Step 3: Obtain ;0 by solving (3.23)-(3.24) with g(x) - 4'(x) - 4O(xO).

Now the solutions obtained by Steps 1-3 satisfy the differential equations together with

the boundary and initial conditions up to terms of order O(). Higher order

approximations can now be obtained in a straightforward manner.

-20-
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4. Numerical Examples

In this section we present some numerical results for a simple testproblem: We chose

a diode of length 1u and a doping profile C which is constantly 1016cm- 3 on the n-side

(and because of symmetry -1016 cm- 3 in the p-region). This corresponds to X - 0.05. We

varied the applied bias from 0.5V reverse bias to 0.5V forward bias. Figures 1-7 show

the solution for x e [0,1] where the p-n-junction is located at x = 0 and the contact

at x - 1. To obtain a solution on [-1,1] the graphs in Figures 1-7 would have to be

continued according to (1.15). For all calculations backward finite differences have been

used in time. In the x-direction we used the exponentially fitted finite difference

method introduced by Scharfetter and Gummel (see Scharfetter and Gummel [1969] and

Markowich et al. [1983b]) with an exponentially graded mesh near x - 0 to resolve the

junction layer. Figures 1 and 2 show the "full" solutions of (1.18)-(1.24) for p and

* respectively. As initial data the steady state solution for 0.5V reverse bias has

been used. Thus no fast time scale solutions occur near t - 0. Figures 3 and 4 show the

corresponding solutions of the reduced problem (2.28)-(2.34). In Figures 2 and 4

log 10 (p) instead of p is plotted. To examine the fast time scale behavior we held the

bias constant at V (equilibrium) and perturbed the initial conditions (thus violating

(2.44)). The dotted line in Figure 5 is the equilibrium solution for *. The other line

is the initial condition for 0. Figure 6 shows the solution for * of the full problem

(1.18)-(1.24) on the fast time scale -. Figure 7 shows the initial layer term *0(x,T)

in (3.10).

I%
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5 Appendix

(5.1) Proof of Theorem (2.36): Let a be given by

(5.2) a= maxjf(x)I
x

.- We employ the following transformation:

p(x,t) - up(x,t), Jp(x,t) -aj ( x,t)

(5.3)

V(x,t) = G*(x,t) + *1 Mt) + Lnc( 1))

(5.4) (2.28)-(2.34) then becomes

(5.5) 1(2ap + C);x + 2p(In C) x x - 0

(5.6) (a) it -Px -A (b) 3p -x -pI(tn C) x

p(oi + C)

2ap + C + 2w

f(x)
(5.7) i(x,O) - (x), (x) ,=

(5.8) (a) p(O,t) = [=p(0,t) + C(O)]e
"2
m*

( O
t) p p(a,t)

(b) 2Px(Ot) - C(O)x (Ot)

(5.9) i(mt) - i - 1(i), ;(1,t) - x .

P(M,t) is dependent on the size of the initial data (a) and the applied bias (l1)

(5.10) 0(Qt) =C() e •- (C a 0c(o) 0

If a is small enough and * is such that 0 is bounded (5.5)-(5.9) is up to a small

perturbation linear in ; and i. Thus it can be solved by Picard iteration if the

appropriate spaces are chosen. we define

(5.11) Y := {(u,v) I u,v e c2 (0,11 x (0,T], U(1,t) = 0 , C(O)UX(Ot) - 2v (Olt)}

xZ := (C (0 11 x [O T])
2  

tO2[ ,T] x C2[0 1]

and the operators

-29-
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A(P,p) =(((C*I + 2p(In C) ' t- p(n C) ,p(0,t), p(1,t), p(x,O))

G(,)-(-20(p* x ) a (p* ) ,' P(a,t)e- 20I(,t) (ap(Ot) + C(0)), 0,0)

Problem (5.5)-(5.9) can then be written in the form

-(,P G(4,p) =(0,0,0,?C1),?(x))

A is a linear operator from Y onto Z with a bounded inverse A'. (hscnsml

be shown by using Fourier expansions.) The Frechet derivative G' of G satisfies

(5.12) EG'(p,D)U ' aU(2CCO) + alp(0)I)p(a,t)e a*

Thus it can he shown by the usual Picard iteration argument that the sequence defined by

(5.13) A(p k+1' * k+1~ G(* k'pk) + (0,0,0,?(1),?(x))

* converges to a solution (p,4') Of (5.5)-(5.9).

(5.14) Proof of lemma (3.12):- Inserting the expansion (3.10) into (3.2) (which are

exponentially small away from x - 0) gives

2-a-0 2- i-0 + 2-0 '-0 2-0 -0
(5.15) A~ X' = xx ( 2  * + 2U + X A )

C [(2U +A* X2 ] 0h.o.t.
xxx x

;0 a -0 0 +0 0X +-0-0 a-
(5.16) u - A [U x+ (p *U) x I + R

Here ;ji and p0 have to be evaluated at (X,TrA ). (5.16) gives

for X + 0. If a > 2 holds then (5.15) becomes

(5.17) ;0 0
XXT

for X + 0. Together with the boundary conditions (3.21) this gives

(5. 18) 4 (x,T) 0

;0
But in this case z 9follows immediately. If a < 2 holds then (5.15) gives for

*X + 0

-0 -
(5.19) -1(2p + C);*l . 0

xx0

3Again using the boundary conditions (3.21) gives only the trivial solution for 4 (and

;0therefore also for z .Thus a -2 has to hold to get a zerolth order correction of

-30-
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* (5.20) Proof of Theorem (3.33): let y be defined by

*(5.21) y(X,r) 0 (X,T)e Q

for some a satisfying (3.37). Then y satisfies

-0_

* (5.22) y ro-T(2p (X,) + C(X) - )y 

(5.23) y(O,T) = y(1,T) - 0

Multiplying (5.22) by y and integrating by parts gives

1 2 12
(5.24) i1 f yxdx f (2p(x,O) + C(x)-a)yxdx

0 0

If

minlip(x,O) + C(X) - 01 > 0
x

holds then the L2  norm of y stays bounded and (3.25) holds.
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